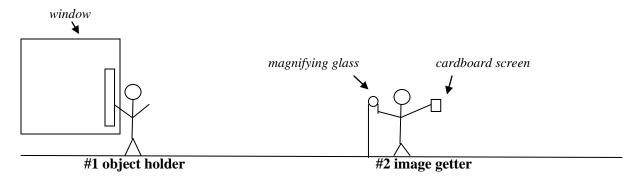
Name	Hour
------	------

Understanding Lenses Lab


points, due	
-------------	--

Purpose:

In the lab you will be looking at the relationships between the size of an image and the size of the object as well as the distance the image is from a lens and the distance the object is from the lens. A converging lens works best for this lab because the image can be captured and measured (real image).

Review before you begin:

In the lab, we will be using the window as our object and screens will capture our image.

^{**}

Have everyone in your group answer these and check them off to get a <u>magnifying glass</u> .**
1) Define <u>and</u> label all of the variables in the above drawing.
p
q
$\mathbf{h_o}$
$\mathbf{h_i}$
2) i) What is a real image?
ii) What is a virtual image?
3) Do a quick sketch of what the ray diagrams will look like in this lab. Your object will be past the focal point of a converging lens. Look at your notes if you need help.

4	What type of image will y	u get in this lab?	How d	lo vou know?

Name			Hour				
EEP UNITS CONSISTENT! (ALL CM OR M) Data: Part 1: Keep the distance to the window constant and change the height of the object. Keep p and q the same but change ho (height of meterstick)							
p (constant)	q (measure this!) Constant!	h _o (This will change)	h _i (think- is this pos. or neg?)	m (pos or neg?) Calculate using hi / ho			
Part 2: In this part, keep the height of the object constant and change the distance to the window. Tip: Start about 1 m away. For each row of data, take one big step away from the window.							
p (measure this!)	q (measure this!) Constant!	h _o (constant)	h _i (pos or neg?)	m (pos or neg?) Calculate using hi/ho			
Analysis: 1) Should your magnification be positive or negative? Why? Fix it in your chart if needed.							

2) What was your average magnification for part 1? _____ part 2? ____

3) Calculate the focal length for your lens. Use one row of data that seems to be a good one.

4) Why is q positive?

5) On separate paper- draw a scaled ray diagram for one row of data in Part 2, not Part 1. Hint: Choose the one when you were closest to the wall (smallest p value) as it will be easier to scale and use the focal length calculated in #3. Staple your scaled ray diagram to the back of this lab. Make sure to measure q and h_i.