\qquad Hour \qquad

Understanding Lenses Lab

\qquad points, due \qquad

Purpose:

In the lab you will be looking at the relationships between the size of an image and the size of the object as well as the distance the image is from a lens and the distance the object is from the lens. A converging lens works best for this lab because the image can be captured and measured (real image).

Review before you begin:

In the lab, we will be using the window as our object and screens will capture our image.
 magnifying glass

\#1 object holder
Have everyone in your group answer these and check them off to get a magnifying glass.

1) Define and label all of the variables in the above drawing. \uparrow

$$
\begin{aligned}
& \mathbf{p -} \\
& \mathbf{q -} \\
& \mathbf{h}_{0}- \\
& \mathbf{h}_{\mathbf{i}}- \\
& \hline
\end{aligned}
$$

2) i) What is a real image?
ii) What is a virtual image?
3) Do a quick sketch of what the ray diagrams will look like in this lab. Your object will be past the focal point of a converging lens. Look at your notes if you need help.
4) What type of image will you get in this lab? \qquad How do you know?
\qquad Hour \qquad

KEEP UNITS CONSISTENT! (ALL CM OR M)

Data:

Part 1: Keep the distance to the window constant and change the height of the object.

Keep p and q the same but change ho (height of meterstick)

\mathbf{p} (constant)	q (measure this!) Constant!	h_{O} (This will change)	h_{i}(think is this pos. or neg?)	$\mathrm{m}_{\text {(palculate or using hi/ho }}$

Part 2: In this part, keep the height of the object constant and change the distance to the window.
Tip: Start about $1 \mathbf{m}$ away. For each row of data, take one big step away from the window.

P (measure this!)	q(measure this!) Constant!	h_{o} (constant)	h_{i} (pos or neg?)	$\mathrm{m}_{\text {(pos or neg?) }}^{\text {Calculate using } \text { hi/ho }}$

Analysis:

1) Should your magnification be positive or negative? Why? Fix it in your chart if needed.
2) What was your average magnification for part 1 ? \qquad part 2? \qquad
3) Calculate the focal length for your lens. Use one row of data that seems to be a good one.
4) Why is q positive?
5) On separate paper- draw a scaled ray diagram for one row of data in Part 2, not Part 1. Hint: Choose the one when you were closest to the wall (smallest p value) as it will be easier to scale and use the focal length calculated in \#3. Staple your scaled ray diagram to the back of this lab. Make sure to measure q and h_{i}.
